Respuesta :

Answer:

[tex](x - 2y)((x - 2y) - 4) + 4[/tex]

Step-by-step explanation:

Given

[tex]x^2 - 4xy - 4x + 4y^2 + 8y + 4[/tex]

Required

Factorize

[tex]x^2 - 4xy - 4x + 4y^2 + 8y + 4[/tex]

Rearrange

[tex]x^2 - 4xy + 4y^2- 4x + 8y + 4[/tex]

Group into three

[tex](x^2 - 4xy + 4y^2)- (4x - 8y) + (4)[/tex]

Factorize the first bracket

[tex](x^2 - 2xy- 2xy + 4y^2) - (4x - 8y) + (4)[/tex]

[tex]x(x - 2y) - 2y(x - 2y)- (4x - 8y) + (4)[/tex]

[tex](x - 2y)(x - 2y) - (4x - 8y) + (4)[/tex]

Factorize the second bracket

[tex](x - 2y)(x - 2y) - 4(x - 2y) + 4[/tex]

x - 2y is a common factor of [tex](x - 2y)(x - 2y) - 4(x - 2y)[/tex]

So, the expression becomes

[tex](x - 2y)((x - 2y) - 4) + 4[/tex]

The expression cannot be further simplified;

Hence, [tex]x^2 - 4xy - 4x + 4y^2 + 8y + 4[/tex] is equivalent to [tex](x - 2y)((x - 2y) - 4) + 4[/tex]