Answer:
[tex]x>4[/tex] or [tex]x \leq -3[/tex]
Step-by-step explanation:
Given :[tex]-6x -1 < -25[/tex] or[tex]3x + 4 \leq -5[/tex]
Solving first inequality :
[tex]-6x-1<-25[/tex]
Add 1 to both sides
[tex]\Rightarrow -6x-1+1<-25+1\\\Rightarrow -6x<-24\\\Rightarrow 6x>24[/tex]
Divide both sides by 6
[tex]\Rightarrow \frac{6}{6}x>\frac{24}{6}\\\Rightarrow x>4[/tex]
Solving second inequality:
[tex]3x + 4 \leq -5[/tex]
Subtract 4 from both sides
[tex]\Rightarrow 3x+4-4 \leq -5-4\\\Rightarrow 3x \leq -9[/tex]
Divide both sides by 3
[tex]\Rightarrow \frac{3}{3}x \leq \frac{-9}{3}[/tex]
[tex]\Rightarrow x \leq -3[/tex]
So, [tex]x>4[/tex] or [tex]x \leq -3[/tex]
Refer the attached graph