A firm has the​ marginal-demand function Upper D prime (x )equalsStartFraction negative 1200 x Over StartRoot 25 minus x squared EndRoot EndFraction . Find the demand function given that Dequals16 comma 000 when x equals $ 4 per unit.

Respuesta :

Answer:

The demand function is  [tex]\mathbf{D(x) = 1200(\sqrt{25-x^2})+ 124000}[/tex]

Step-by-step explanation:

A firm has the​ marginal-demand function [tex]D' x = \dfrac{-1200}{\sqrt{25-x^2 } }[/tex].

Find the demand function given that D = 16,000 when x = $4 per unit.

What we are required to do  is to find the demand function D(x);

If we integrate D'(x) with respect to x ; we have :

[tex]\int\limits \ D'(x) \, dx = \int\limits{\dfrac{-1200 x}{\sqrt{25-x^2}} } \, dx[/tex]

[tex]D(x) = \int\limits{\dfrac{-1200 x}{\sqrt{25-x^2}} } \, dx[/tex]

Let represent   t  with [tex]\sqrt{25-x^2}}[/tex]

The differential of t with respect to x is :

[tex]\dfrac{dt}{dx}= \dfrac{1}{2 \sqrt{25-x^2}}}(-2x)[/tex]

[tex]\dfrac{dt}{dx}= \dfrac{-x}{ \sqrt{25-x^2}}}[/tex]

[tex]{dt}= \dfrac{-xdx}{ \sqrt{25-x^2}}}[/tex]

replacing the value of  [tex]\dfrac{-xdx}{ \sqrt{25-x^2}}}[/tex]  for dt in   [tex]D(x) = \int\limits{\dfrac{-1200 x}{\sqrt{25-x^2}} } \, dx[/tex]

So; we can say :

[tex]D(x) = \int\limits{\dfrac{-1200 x}{\sqrt{25-x^2}} } \, dx[/tex]

[tex]D(x) = 1200\int\limits{\dfrac{- x}{\sqrt{25-x^2}} } \, dx[/tex]

[tex]D(x) = 1200\int\limits \ dt[/tex]

[tex]D(x) = 1200t+ C[/tex]

Let's Recall that :

t  = [tex]\sqrt{25-x^2}}[/tex]

Now;

[tex]\mathbf{D(x) = 1200(\sqrt{25-x^2}})+ C}[/tex]

GIven that:

D = 16,000 when x = $4 per unit.

i.e

D(4) = 16000

SO;

[tex]D(x) = 1200(\sqrt{25-x^2}})+ C[/tex]

[tex]D(4) = 1200(\sqrt{25-4^2}})+ C[/tex]

[tex]D(4) = 1200(\sqrt{25-16}})+ C[/tex]

[tex]D(4) = 1200(\sqrt{9}})+ C[/tex]

[tex]D(4) = 1200(3}})+ C[/tex]

16000 = 1200 (3) + C

16000 = 3600 + C

16000 - 3600 = C

C = 12400

replacing the value of C = 12400 into [tex]\mathbf{D(x) = 1200(\sqrt{25-x^2}})+ C}[/tex], we have:

[tex]\mathbf{D(x) = 1200(\sqrt{25-x^2})+ 124000}[/tex]

∴ The demand function is  [tex]\mathbf{D(x) = 1200(\sqrt{25-x^2})+ 124000}[/tex]