Answer:
The permittivity of rubber is [tex]\epsilon = 8.703 *10^{-11}[/tex]
Explanation:
From the question we are told that
The magnitude of the point charge is [tex]q_1 = 70 \ nC = 70 *10^{-9} \ C[/tex]
The diameter of the rubber shell is [tex]d = 32 \ cm = 0.32 \ m[/tex]
The Electric field inside the rubber shell is [tex]E = 2500 \ N/ C[/tex]
The radius of the rubber is mathematically evaluated as
[tex]r = \frac{d}{2} = \frac{0.32}{2} = 0.16 \ m[/tex]
Generally the electric field for a point is in an insulator(rubber) is mathematically represented as
[tex]E = \frac{Q}{ \epsilon } * \frac{1}{4 * \pi r^2}[/tex]
Where [tex]\epsilon[/tex] is the permittivity of rubber
=> [tex]E * \epsilon * 4 * \pi * r^2 = Q[/tex]
=> [tex]\epsilon = \frac{Q}{E * 4 * \pi * r^2}[/tex]
substituting values
[tex]\epsilon = \frac{70 *10^{-9}}{2500 * 4 * 3.142 * (0.16)^2}[/tex]
[tex]\epsilon = 8.703 *10^{-11}[/tex]