Given: AD = BC and AD || BC
Prove: ABCD is a parallelogram.
Angles Segments Triangles Statements Reasons
ZBCA
DAC
A
Statements
Reasons
00
D
с
Assemble the proof by dragging tiles to
the Statements and Reasons columns.

Given AD BC and AD BC Prove ABCD is a parallelogram Angles Segments Triangles Statements Reasons ZBCA DAC A Statements Reasons 00 D с Assemble the proof by drag class=

Respuesta :

Answer:

See below

Step-by-step explanation:

Proof:

Statements                                    |  Reasons

AD ≅ BC                                         | Given

AD ║ BC                                         | Given

AC ≅ AC                                         |  Reflexive Property

∠DAC ≅ ∠ACB                               | If 2 || lines are cut by a trans., the                                                                       |  alternate interior ∠s are congruent.

ΔADC ≅ ΔBCA                               | S.A.S  Postulate

BA ≅ DC                                         | Corresponding sides of congruent Δs

So, quad. ABCD is a ║gm             | If a quad. has its opposite sides

                                                       | congruent, the quad. is a parallelogram.

It is prove that given quadrilateral is a parallelogram.

  • Given that,

            AD ≅ BC      and AD ║ BC              

  • By reflexive property,

            AC ≅ AC            

  • If two parallel lines are cut by a transversal. Then, alternate interior angles are congruent.                                                                                

       So that,   ∠DAC ≅ ∠ACB                              

  • By Side - angle - Side congruency rule,

            ΔADC ≅ ΔBCA    

  • Since, the Corresponding sides of congruent triangles are congruent.                      

        So that, BA ≅ DC                                        

Hence, opposite sides of given quadrilateral are equal. Therefore, given quadrilateral are parallelogram.

Learn more:

https://brainly.com/question/16702162