Respuesta :
Answer:
A) Market Value: $1,251.2220
B) Market Value: $898.94
C) the price of the bonds will decrease over time. As the nominal amount will suffer from less discounting over time at maturity will match the nominal amount of $ 1,000. To do so It need to decrease over time.
Explanation:
The value of the bonds will be the present value of the future coupon payment and maturity at the new rate of 6%
PV of the coupon payment
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 50.000 (1,000 x 10% / 2 ayment per year)
time 16 (8 year to maturity x 2 payment per year)
rate 0.03 (6% over two payment per year)
[tex]50 \times \frac{1-(1+0.03)^{-16} }{0.03} = PV\\[/tex]
PV $628.0551
PV of the maturity
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity 1,000.00
time 16.00
rate 0.03
[tex]\frac{1000}{(1 + 0.03)^{16} } = PV[/tex]
PV 623.17
PV c $628.0551
PV m $623.1669
Total $1,251.2220
If the rate is 12%
PV of the coupon payment:
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 50.000
time 16
rate 0.06
[tex]50 \times \frac{1-(1+0.06)^{-16} }{0.06} = PV\\[/tex]
PV $505.2948
PV of the maturity:
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity 1,000.00
time 16.00
rate 0.06
[tex]\frac{1000}{(1 + 0.06)^{16} } = PV[/tex]
PV 393.65
PV c $505.2948
PV m $393.6463
Total $898.9410