Answer: 0.003757(approx).
Step-by-step explanation:
Total number of combinations of selecting r things out of n things is given by:-
[tex]^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]
Total cards in a deck = 52
Total number of ways of choosing 8 cards out of 52 = [tex]^{52}C_8[/tex]
Total number of ways to choose 5 clubs and 3 cards with one of each remaining suit = [tex]^{13}C_5\times^{13}C_1\times^{13}C_1\times^{13}C_1[/tex] [since 1 suit has 13 cards]
The required probability = [tex]=\dfrac{^{13}C_5\times^{13}C_1\times^{13}C_1\times^{13}C_1}{^{52}C_8}[/tex]
[tex]=\dfrac{\dfrac{13!}{5!8!}\times13\times13\times13}{\dfrac{52!}{8!44!}}\\\\=\dfrac{24167}{6431950}\\\\\approx0.003757[/tex]
Hence, the required probability is 0.003757 (approx).