suppose for an angle theta in a right triangle cos theta = C. Sketch and label this triangle, and then use it to write the other five trig functions of theta in terms of C.

Respuesta :

Answer:

[tex]sin\theta = \sqrt{1-C^2}[/tex]

[tex]tan\theta = \dfrac{\sqrt{1-C^2}}{C}[/tex]

[tex]cot\theta = \dfrac{C}{\sqrt{1-C^2}}[/tex]

[tex]sec\theta = \dfrac{1}{C}}[/tex]

[tex]cosec\theta = \dfrac{1}{\sqrt{1-C^2}}[/tex]

Step-by-step explanation:

Given that:

[tex]\theta[/tex] is an angle in a right angled triangle.

and [tex]cos\theta = C[/tex]

To find:

To draw the triangle and write other five trigonometric functions in terms of C.

Solution:

We know that cosine of an angle is given by the formula:

[tex]cosx =\dfrac{Base}{Hypotenuse}[/tex]

Here, we are given that [tex]cos\theta = C[/tex] OR

[tex]cos\theta = \dfrac{C}{1}[/tex]

i.e. Base = C and Hypotenuse of triangle = 1

Please refer to the right angled triangle as per given statements.

[tex]\triangle PQR[/tex], with base PR = C units

and hypotenuse, QP = 1 unit

[tex]\angle R[/tex] is the right angle.

Let us use pythagorean theorem to find the value of perpendicular.

According to pythagorean theorem:

[tex]\text{Hypotenuse}^{2} = \text{Base}^{2} + \text{Perpendicular}^{2}[/tex]

[tex]1^{2} = C^{2} + QR^{2}\\\Rightarrow QR = \sqrt {1-C^2}[/tex]

[tex]sin\theta = \dfrac{Perpendicular}{Hypotenuse}\\\Rightarrow sin\theta = \dfrac{\sqrt{1-C^2}}{1}\\\Rightarrow sin\theta = \sqrt{1-C^2}[/tex]

[tex]tan\theta = \dfrac{Perpendicular}{Base}\\\Rightarrow tan\theta = \dfrac{\sqrt{1-C^2}}{C}[/tex]

[tex]cot\theta = \dfrac{Base}{Perpendicular}\\\Rightarrow cot\theta = \dfrac{C}{\sqrt{1-C^2}}[/tex]

[tex]sec\theta = \dfrac{Hypotenuse}{Base}\\\Rightarrow sec\theta = \dfrac{1}{C}}[/tex]

[tex]cosec\theta = \dfrac{Hypotenuse}{Perpendicular}\\\Rightarrow cosec\theta = \dfrac{1}{\sqrt{1-C^2}}[/tex]

Ver imagen isyllus