Respuesta :

Answer:

[tex] (0, 8\sqrt{3}) [/tex]  and  [tex] (0, -8\sqrt{3}) [/tex] are both 14 units from points (-2, 0) and (2, 0).

Step-by-step explanation:

distance formula

[tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]

We want the distance, d, from points (-2, 0) and (2, 0) to be 14.

Point (-2, 0):

[tex] 14 = \sqrt{(x - (-2))^2 + (y - 0)^2} [/tex]

[tex] \sqrt{(x + 2)^2 + y^2} = 14 [/tex]

Point (2, 0):

[tex] 14 = \sqrt{(x - 2)^2 + (y - 0)^2} [/tex]

[tex] \sqrt{(x - 2)^2 + y^2} = 14 [/tex]

We have a system of equations:

[tex] \sqrt{(x + 2)^2 + y^2} = 14 [/tex]

[tex] \sqrt{(x - 2)^2 + y^2} = 14 [/tex]

Since the right sides of both equations are equal, we set the left sides equal.

[tex] \sqrt{(x + 2)^2 + y^2} = \sqrt{(x - 2)^2 + y^2} [/tex]

Square both sides:

[tex] (x + 2)^2 + y^2 = (x - 2)^2 + y^2 [/tex]

Square the binomials and combine like terms.

[tex] x^2 + 4x + 4 + y^2 = x^2 - 4x + 4 + y^2 [/tex]

[tex] 4x = -4x [/tex]

[tex] 8x = 0 [/tex]

[tex] x = 0 [/tex]

Now we substitute x = 0 in the first equation of the system of equations:

[tex] \sqrt{(x + 2)^2 + y^2} = 14 [/tex]

[tex] \sqrt{(0 + 2)^2 + y^2} = 14 [/tex]

[tex] \sqrt{4 + y^2} = 14 [/tex]

Square both sides.

[tex] y^2 + 4 = 196 [/tex]

[tex] y^2 = 192 [/tex]

[tex] y = \pm \sqrt{192} [/tex]

[tex] y = \pm \sqrt{64 \times 3} [/tex]

[tex] y = \pm 8\sqrt{3} [/tex]

The points are:

[tex] (0, 8\sqrt{3}) [/tex]  and  [tex] (0, -8\sqrt{3}) [/tex]