Respuesta :
Answer:
a) [tex]S = \frac{1}{2}gt^2\\[/tex]
b) 6secs
c) 192ft
Explanation:
If a ball dropped from a stationary hot-air balloon that is at an altitude of 576 ft, an expression for the altitude of the ballast after t seconds can be expressed using the equation of motion;
[tex]S = ut + \frac{1}{2}at^{2}[/tex]
S is the altitude of the ballest
u is the initial velocity
a is the acceleration of the body
t is the time taken to strike the ground
Since the body is dropped from a stationary air balloon, the initial velocity u will be zero i.e u = 0m/s
Also, since the ballast is dropped from a stationary hot-air balloon, the body is under the influence of gravity, the acceleration will become acceleration due to gravity i.e a = +g
Substituting this values into the equation of the motion;
[tex]S = 0 + \frac{1}{2}gt^2\\ S = \frac{1}{2}gt^2\\[/tex]
a) An expression for the altitude of the ballast after t seconds is therefore
[tex]S = \frac{1}{2}gt^2\\[/tex]
b) Given S = 576ft and g = 32ft/s², substituting this into the formula in (a);
[tex]576 = \frac{1}{2}(32)t^2\\\\\\576*2 = 32t^2\\1152 = 32t^2\\t^2 = \frac{1152}{32} \\t^2 = 36\\t = \sqrt{36}\\ t = 6.0secs[/tex]
This means that the ballast strikes the ground after 6secs
c) To get the velocity when it strikes the ground, we will use the equation of motion v = u + gt.
v = 0 + 32(6)
v = 192ft