Respuesta :

Answer:

Step-by-step explanation:

Complete Question

The complete question is  shown on the first uploaded image

Answer:

The  area is  [tex]A =8 sq\cdot unit[/tex]

Step-by-step explanation:

     

   From the question we are told that

     The  first equation is [tex]f(x) = x^2 + x \ \ \ x< 1[/tex]      

                                                                                    [tex]on[ -2 , 3 ][/tex]

      The  second equation is  [tex]f(x) = 2 x \ \ \ x \ge 1[/tex]  

This means that the limit of the area under the enclosed region is limited between -2 to  1  on the x- axis  for first equation and  1 to  3 for second equation

    Now  the area under the region is evaluated as

                   [tex]A = \int\limits^1_{-2}{x^2 + x } \, dx + \int\limits^3_{1}{2x } \, dx[/tex]

                   [tex]A ={ \frac{x^3}{3} + \frac{x^2}{2} + c } | \left \ 1 } \atop {-2}} \right. + {\frac{2x^2}{2} }| \left \ 3} \atop {1}} \right.[/tex]

                  [tex]A =9 + c - 1 -c[/tex]

                 [tex]A =8 sq\cdot unit[/tex]

   

Ver imagen okpalawalter8