Respuesta :

Answer:

39.6

Step-by-step explanation:

Given in the right angled triangle above are:

Ѳ = 49°,

Adjacent length = 26

Hypotenuse length = x

To find x in the right angled triangle given above, apply the trigonometric formula, cos Ѳ = adjacent length/hypotenuse length

Thus,

[tex] cos(49) = \frac{26}{x} [/tex]

Multiply both sides by x

[tex] cos(49)*x = \frac{26}{x}*x [/tex]

[tex] cos(49)*x = 26 [/tex]

[tex] 0.6561*x = 26 [/tex]

Divide both sides by 0.6561 to find x

[tex] \frac{0.6561*x}{0.6561} = \frac{26}{0.6561} [/tex]

[tex] x = \frac{26}{0.6561} [/tex]

[tex] x = \frac{26}{0.6561} [/tex]

[tex] x = 39.63 [/tex]

x = 39.6 (to nearest tenth)