Use Demoivres Theorem to find (-square root 3 +i)^6

Answer:
[tex]z=(-\sqrt{3}+i)^6[/tex] = -64
Step-by-step explanation:
You have the following complex number:
[tex]z=(-\sqrt{3}+i)^6[/tex] (1)
The Demoivres theorem stables the following:
[tex]z^n=r^n(cos(n\theta)+i sin(n\theta))[/tex] (2)
In this case you have n=6
In order to use the theorem you first find r and θ, as follow:
[tex]r=\sqrt{3+1}=2\\\\\theta=tan^{-1}(\frac{1}{\sqrt{3}})=30\°[/tex]
Next, you replace these values into the equation (2) with n=6:
[tex]z^6=(2)^6[cos(6*30\°)+isin(6*30\°)]\\\\z^6=64[-1+i0]=-64[/tex]
Then, the solution is -64