What would the Hall voltage be if a 2.00-T field is applied across a 10-gauge copper wire (2.588 mm in diameter) carrying a 20.0-A current

Respuesta :

Answer:

The hall  voltage is [tex]\epsilon =1.45 *10^{-6} \ V[/tex]

Explanation:

From the question we are told that

     The magnetic field is  [tex]B = 2.00 \ T[/tex]

     The diameter is  [tex]d = 2.588 \ mm = 2.588 *10^{-3} \ m[/tex]

       The  current is  [tex]I = 20 \ A[/tex]

The radius can be evaluated as

        [tex]r = \frac{d}{2}[/tex]

substituting values

       [tex]r = \frac{2.588 * 10^{-3}}{2}[/tex]

       [tex]r = 1.294 *10^{-3} \ m[/tex]

The hall voltage is mathematically represented as

      [tex]\episilon = B * d * v_d[/tex]

where[tex]v_d[/tex] is the  drift velocity of the electrons on the current carrying conductor which  is mathematically evaluated as

       [tex]v_d = \frac{I}{n * A * q }[/tex]

Where n is the number of electron per cubic meter which for copper is  

        [tex]n = 8.5*10^{28} \ electrons[/tex]

  A is the cross - area of the wire  which is mathematically represented as

           [tex]A = \pi r^2[/tex]

substituting values

          [tex]A = 3.142 * [ 1.294 *10^{-3}]^2[/tex]

          [tex]A = 5.2611 *10^{-6} \ m^2[/tex]

so the drift velocity is  

       [tex]v_d = \frac{20 }{ 8.5*10^{28} * 5.26 *10^{-6} * 1.60 *10^{-19} }[/tex]

       [tex]v_d = 2.7 *10^{-4 } \ m/s[/tex]

Thus the hall voltage is

     [tex]\epsilon = 2.0 * 2.588*10^{-3} * 2.8 *10^{-4}[/tex]

     [tex]\epsilon =1.45 *10^{-6} \ V[/tex]