Answer:
1800 [tex]m^{2}[/tex] is the area of parallelogram.
Step-by-step explanation:
Given that:
Area of a triangle = 900 [tex]m^{2}[/tex]
To find:
Area of a parallelogram which has same height and base as that of the given triangle.
Solution:
First of all, let us have a look at the formula for Area of a parallelogram:
[tex]Area_{Par} = Base \times Height[/tex] ...... (1)
So as to find the area of a parallelogram, we need to have the product of Base and Height of Parallelogram.
Now, let us have a look at the formula for area of a triangle:
[tex]Area_{Tri} = \dfrac{1}{2} \times Base \times Height[/tex]
Given that height and base of triangle and parallelogram are equal to each other.
So,the product of base and height will also be equal to each other.
[tex]900 = \dfrac{1}{2} \times Base \times Height\\\Rightarrow Base \times Height = 2 \times 900\\\Rightarrow Base \times Height = 1800\ m^2[/tex]
By equation (1):
Area of parallelogram = 1800 [tex]m^{2}[/tex]