Answer: C) d-6.5 units: M(0.5, 8.5.-2)
Step-by-step explanation:
Distance between points [tex](x_1,y_1,z_1)[/tex] and [tex](x_2,y_2,z_2)[/tex] :
[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}[/tex]
The midpoint of the line joining [tex](x_1,y_1,z_1)[/tex] and [tex](x_2,y_2,z_2)[/tex] is given by :-
[tex](\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2},\dfrac{z_1+z_2}{2})[/tex]
The given points : (3,8, 0) and (-2,9,-4)
Distance between points (3,8, 0) and (-2,9,-4):
[tex]D=\sqrt{(-2-3)^2+(9-8)^2+(-4-0)^2}\\\\=\sqrt{25+1+16}\\\\=\sqrt{42}=6.48074069841\approx6.5\text{units}[/tex]
The midpoint of the line joining (3,8, 0) and (-2,9,-4) :
[tex](\dfrac{3+(-2)}{2},\dfrac{8+9}{2},\dfrac{0+(-4)}{2})=(\dfrac{1}{2},\dfrac{17}{2},-2)\\\\=(0.5, 8.5.-2)[/tex]
Hence, the correct answer is C) d-6.5 units: M(0.5, 8.5.-2).