Answer:
[tex]F_x[/tex] = -1.5t
[tex]F_y[/tex] = 0.25
[tex]F_{z}[/tex] = 0
Explanation:
Given equation;
p = [(-0.75 kgm/s³)t² + (3.0 kgm/s)] i + (0.25 kgm/s²)t j.
From Newton's law, the rate of change of momentum of a body is the net force acting on that body. i.e
∑F = [tex]\frac{dp}{dt}[/tex] -----------(i)
Substitute the equation of p into equation (i) and differentiate with respect to t as follows;
∑F = [tex]\frac{dp}{dt}[/tex] = [tex]\frac{d| [(-0.75)t^{2} + (3.0)] i + (0.25)t j|}{dt}[/tex]
∑F = [tex]\frac{dp}{dt}[/tex] = [tex][-1.5t + 0]i + 0.25j[/tex]
∑F = [tex][-1.5t + 0]i + 0.25j[/tex]
But
∑F = [tex]F_xi + F_yj + F_zk[/tex]
Where;
[tex]F_x, F_y, F_z[/tex] are the components of the net force in the x, y and z direction respectively.
=> [tex]F_xi + F_yj + F_zk[/tex] = [tex][-1.5t + 0]i + 0.25j[/tex] = [tex]-1.5ti + 0.25j[/tex]
=> [tex]F_x[/tex] = -1.5t
=> [tex]F_y[/tex] = 0.25
=> [tex]F_{z}[/tex] = 0