Respuesta :
Answer:
F ’= F 0.25
Explanation:
This problem refers to the electric force, which is described by Coulomb's law
F = k q₁ q₂ / r²
where k is the Coulomb constant, q the charges and r the separation between them.
The initial conditions are
F = k q_A q_B / d²
they indicate that the loads are reduced to ¼ q and the distance is reduced to ½ d
F ’= k (q / 4 q / 4) / (0.5 d)²
F ’= k q / 16 / 0.25 d²
F ’= k q² / d² 0.0625 / 0.25
F ’= F 0.25
Two identically charged point-like objects A and B exert a force of magnitude F on each other when separated by distance d. If the charges are reduced to one-fourth of their original values and the distance is halved, the new force will be one-fourth of the original force.
Two identically charged point-like objects A and B exert a force of magnitude F on each other when separated by distance d. This can be explained through Coulomb's law.
What is Coulomb's law?
Coulomb's law is a law stating that like charges repel and opposite charges attract, with a force proportional to the product of the charges and inversely proportional to the square of the distance between them.
[tex]F = k \frac{q_Aq_B}{d^{2} } = k \frac{q^{2} }{d^{2} } [/tex]
where,
- [tex]q_A [/tex] and [tex]q_B[/tex] are the charges of A and B (and equal to q).
- k is the Coulomb's constant.
If you reduce the charge of A to one-fourth its original value, and the charge of B to one-fourth, and reduce the distance between the objects by half, the new force will be:
[tex]F_2 = k \frac{(0.25q_A)(0.25q_B)}{(0.5d)^{2} } = 0.25k\frac{q^{2} }{d^{2} } = 0.25 F[/tex]
Two identically charged point-like objects A and B exert a force of magnitude F on each other when separated by distance d. If the charges are reduced to one-fourth of their original values and the distance is halved, the new force will be one-fourth of the original force.
Learn more about Coulomb's law here: https://brainly.com/question/506926