contestada

Find all solutions of the equation in the interval [0, 2pi).
2 cos 0 - 13 = 0
Write your answer in radians in terms of t.
If there is more than one solution, separate them with commas.

Respuesta :

Answer:

The solutions of 2·cos(θ) - √3 = 0in the interval [0, 2pi) are;

π/6,  13/6·π

Step-by-step explanation:

The given that the equation is 2·cos(θ) - √3 = 0

The solution of the above equation in the interval [0, 2pi) are required

Therefore, the domain includes 0 ≤ θ < 2pi

2·cos(θ) - √3 = 0

2·cos(θ)  = √3

cos(θ)  = √3/2

Therefore;

θ = cos⁻¹(√3/2)

The values are;

[tex]\theta =\dfrac{12 \cdot \pi \cdot n_1 +\pi }{6} \, or \, \theta =-\dfrac{12 \cdot \pi \cdot n_1 +\pi }{6}[/tex]

Where the domain is 0 ≤ θ < 2pi, we have;

π/6,  13/6·π