What is the equation for a straight line that would allow you to predict the value of Y from a given value of X. That is, calculate the value of "a" and the value of "b" and then substitute the 2 values into the generic equation (Y = a + bX) for a straight line. (Hint: calculate "b" first)

What is the equation for a straight line that would allow you to predict the value of Y from a given value of X That is calculate the value of a and the value o class=

Respuesta :

Answer:

[tex]m=-\frac{13}{20.8}=-0.625[/tex]

Nowe we can find the means for x and y like this:

[tex]\bar x= \frac{\sum x_i}{n}=\frac{16}{5}=3.2[/tex]

[tex]\bar y= \frac{\sum y_i}{n}=\frac{35}{5}=7[/tex]

And we can find the intercept using this:

[tex]b=\bar y -m \bar x=7-(-0.625*3.2)=9[/tex]

So the line would be given by:

[tex]y=-0.625 x +9[/tex]

Step-by-step explanation:

We have the following data:

X: 3,3,2,1,7

Y:6,7,8,9,5

We want to find an equationinf the following form:

[tex] y= bX +a[/tex]

[tex]a=m=\frac{S_{xy}}{S_{xx}}[/tex]

Where:

[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]

[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]

So we can find the sums like this:

[tex]\sum_{i=1}^n x_i = 3+3+2+1+7=16[/tex]

[tex]\sum_{i=1}^n y_i =6+7+8+9+5=35[/tex]

[tex]\sum_{i=1}^n x^2_i =72[/tex]

[tex]\sum_{i=1}^n y^2_i =255[/tex]

[tex]\sum_{i=1}^n x_i y_i =99[/tex]

With these we can find the sums:

[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=72-\frac{16^2}{5}=20.8[/tex]

[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}=99-\frac{16*35}{5}=-13[/tex]

And the slope would be:

[tex]m=-\frac{13}{20.8}=-0.625[/tex]

Nowe we can find the means for x and y like this:

[tex]\bar x= \frac{\sum x_i}{n}=\frac{16}{5}=3.2[/tex]

[tex]\bar y= \frac{\sum y_i}{n}=\frac{35}{5}=7[/tex]

And we can find the intercept using this:

[tex]b=\bar y -m \bar x=7-(-0.625*3.2)=9[/tex]

So the line would be given by:

[tex]y=-0.625 x +9[/tex]