Respuesta :

Answer:

(-1,5) and [tex](3, \frac{1}{125})[/tex] are points on the graph

Step-by-step explanation:

Given

[tex]g(x) = \frac{1}{5}^x[/tex]

Required

Determine which point in on the graph

To get which of point A to D is on the graph, we have to plug in their values in the given expression using the format; (x,g(x))

A. (-1,5)

x = -1

Substitute -1 for x in [tex]g(x) = \frac{1}{5}^x[/tex]

[tex]g(x) = \frac{1}{5}^{-1}[/tex]

Convert to index form

[tex]g(x) = 1/(\frac{1}{5})[/tex]

Change / to *

[tex]g(x) = 1*(\frac{5}{1})[/tex]

[tex]g(x) = 5[/tex]

This satisfies (-1,5)

Hence, (-1,5) is on the graph

B. (1,0)

x = 1

Substitute 1 for x

[tex]g(x) = \frac{1}{5}^x[/tex]

[tex]g(x) = \frac{1}{5}^1[/tex]

[tex]g(x) = \frac{1}{5}[/tex]

(1,0) is not on the graph because g(x) is not equal to 0

C. [tex](3, \frac{1}{125})[/tex]

x = 3

Substitute 3 for x

[tex]g(x) = \frac{1}{5}^x[/tex]

[tex]g(x) = \frac{1}{5}^3[/tex]

Apply law of indices

[tex]g(x) = \frac{1}{5} * \frac{1}{5} * \frac{1}{5}[/tex]

[tex]g(x) = \frac{1}{125}[/tex]

This satisfies [tex](3, \frac{1}{125})[/tex]

Hence, [tex](3, \frac{1}{125})[/tex] is on the graph

D.  [tex](-2, \frac{1}{25})[/tex]

x = -2

Substitute -2 for x

[tex]g(x) = \frac{1}{5}^x[/tex]

[tex]g(x) = \frac{1}{5}^{-2}[/tex]

Convert to index form

[tex]g(x) = 1/(\frac{1}{5}^2)[/tex]

[tex]g(x) = 1/(\frac{1}{5}*\frac{1}{5})[/tex]

[tex]g(x) = 1/(\frac{1}{25})[/tex]

Change / to *

[tex]g(x) = 1*(\frac{25}{1})[/tex]

[tex]g(x) = 25[/tex]

This does not satisfy  [tex](-2, \frac{1}{25})[/tex]

Hence, [tex](-2, \frac{1}{25})[/tex] is not on the graph