The mean number of words per minute (WPM) typed by a speed typist is 149149 with a standard deviation of 1414 WPM. What is the probability that the sample mean would be greater than 147.8147.8 WPM if 8888 speed typists are randomly selected

Respuesta :

Answer:

The probability is  [tex]P(\= X > x ) = 0.78814[/tex]

Step-by-step explanation:

From the question we are given that

     The population  mean is  [tex]\mu = 149[/tex]

     The standard deviation is  [tex]\sigma = 14[/tex]

     The random number    [tex]x = 147.81[/tex]

      The sample  size is  [tex]n = 88[/tex]

The probability that  the sample mean would be greater than [tex]P(\= X > x ) = P( \frac{ \= x - \mu }{\sigma_{\= x} } > \frac{ x - \mu }{\sigma_{\= x} } )[/tex]

Generally the z- score of this normal distribution is mathematically represented as

       [tex]Z = \frac{ \= x - \mu }{\sigma_{\= x} }[/tex]

Now

        [tex]\sigma_{\= x } = \frac{\sigma }{\sqrt{n} }[/tex]

substituting values

         [tex]\sigma_{\= x } = \frac{14 }{\sqrt{88} }[/tex]

         [tex]\sigma_{\= x } = 1.492[/tex]

Which implies that

         [tex]P(\= X > x ) = P( Z > \frac{ 147.81 - 149 }{ 1.492} )[/tex]

        [tex]P(\= X > x ) = P( Z > -0.80 )[/tex]

Now from the z-table  the  probability is  found to be

        [tex]P(\= X > x ) = 0.78814[/tex]