Answer:
a) rms of electric field =
[tex]E_{rms}[/tex]= 25.97 V/m
b) rms of magnetic field
[tex]B_{rms}[/tex] = 8.655 × 10⁻⁸
[tex]B_{rms}[/tex] = 86.55nT
Explanation:
given
power p = 90.0W
distance d = 2.00m
Intensity = [tex]\frac{power}{area}[/tex]
I = [tex]\frac{p}{A}[/tex]
A = [tex]4\pi d^{2}[/tex]
I = [tex]\frac{p}{4\pi d^{2} }[/tex]
I = [tex]\frac{90}{4\pi(2^{2}) }[/tex]
I = 1.79 W/m²
a) [tex]I_{ave}[/tex] = ε₀ × [tex]E^{2} _{rms}[/tex] × c
where ε₀ is permittivity of free space = 8.85×10⁻¹², [tex]E^{2} _{rms}[/tex] is the root mean value and c is speed of light = 3×10⁸m/s
1.79 = 8.85×10⁻¹² × [tex]E^{2} _{rms}[/tex] × 3×10⁸
[tex]E^{2} _{rms}[/tex] = [tex]\frac{1.79}{8.85x10^{-12} x 3x10^{8} }[/tex]
[tex]E^{2} _{rms}[/tex]= 674.1996
[tex]E_{rms}[/tex]= 25.97 V/m
b)for rems magnetic field
[tex]E_{rms}[/tex]= c [tex]B_{rms}[/tex]
[tex]B_{rms}[/tex] = [tex]\frac{E_{rms} }{c}[/tex]
[tex]B_{rms}[/tex] = [tex]\frac{25.97 V/m}{3x10^{8} }[/tex]
[tex]B_{rms}[/tex] = 8.655 × 10⁻⁸
[tex]B_{rms}[/tex] = 86.55nT