Respuesta :

Answer:

[tex]\frac{9}{a - b}[/tex].

Step-by-step explanation:

a^2 - b^2 = 9

(a + b)(a - b) = 9

a + b = [tex]\frac{9}{a - b}[/tex].

ab = 3

a = 3/b

3/b + b = [tex]\frac{9}{\frac{3}{b} -b}[/tex]

3 + b^2 = [tex]\frac{9b}{\frac{3}{b}-\frac{b^2}{b} }[/tex]

3 + b^2 = [tex]\frac{9b}{\frac{3-b^2}{b} }[/tex]

3 + b^2 = [tex]9b * \frac{b}{-b^2 + 3}[/tex]

3 + b^2 = [tex]\frac{9b^2}{-b^2 + 3}[/tex]

(b^2 + 3)(-b^2 + 3) = 9b^2

-b^4 + 9 = 9b^2

b^4 + 9b^2 - 9 = 0

Let's say that b^2 = x

x^2 + 9x - 9 = 0

Hope this [somewhat] helps!

Answer:

Step-by-step explanation:

a²-b²=9

ab=3 then a=3/b

a²-b²=9

(a+b)(a-b)=9 ( the values has to b (3*3) or (9*1)

but since ab=3. so the value has to be (3*3)

(a+b)(a-b)=9

3*3=9

a+b=3

ab=3