Respuesta :

Step-by-step explanation:

In the fourth quadrant, the equation of the unit circle is:

y = -√(1 − x²), 0 ≤ x ≤ 1

The x and y coordinates of the centroid are:

cₓ = (∫ x dA) / A = (∫ xy dx) / A

cᵧ = (∫ y dA) / A = (∫ ½ y² dx) / A

For a quarter circle in the fourth quadrant, A = -π/4.

Solving each integral:

∫₀¹ xy dx

= ∫₀¹ -x √(1 − x²) dx

= ½ ∫₀¹ -2x √(1 − x²) dx

If u = 1 − x², then du = -2x dx.

When x = 0, u = 1.  When x = 1, u = 0.

= ½ ∫₁⁰ √u du

= ½ ∫₁⁰ u^½ du

= ½ (⅔ u^³/₂) |₁⁰

= (⅓ u√u) |₁⁰

= 0 − ⅓

= -⅓

∫₀¹ ½ y² dx

= ½ ∫₀¹ (1 − x²) dx

= ½ (x − ⅓ x³) |₀¹

= ½ [(1 − ⅓) − (0 − 0)]

= ⅓

Therefore, the x and y coordinates of the centroid are:

cₓ = (-⅓) / (-π/4) = 4/(3π)

cᵧ = (⅓) / (-π/4) = -4/(3π)