Respuesta :

Step-by-step explanation:

5 log₅ x − ¼ log₅ (8−x)

log₅ x⁵ − log₅ (8−x)^¼

log₅ x⁵ − log₅ ∜(8−x)

log₅ (x⁵ / ∜(8−x))

The expression 5 log₅ x - 1/4 log₅ (8 - x) can be condensed to [tex]log_{5} \frac{x^5}{\sqrt[4]{8-x} }[/tex] , using the laws of logarithms and exponents.

What are logarithmic expressions?

A logarithmic expression x = logₐb, implies that aˣ = b.

What are the properties used in solving logarithmic expressions?

Some properties used to solve logarithmic expressions are:

  • Power law: logₐ xⁿ = n.logₐ x
  • Product law: logₓ a + logₓ b = logₓ ab
  • Quotient law: logₓ a - logₓ b = logₓ a/b

How to solve the given question?

In the question, we are asked to condense the expression:

5 log₅ x - 1/4 log₅ (8 - x)

= [tex]log_{5}x^{5} - log_{5}(8 - x)^{1/4}[/tex], (using the power law: logₐ xⁿ = n.logₐ x)

= [tex]log_{5}x - log_{5}\sqrt[4]{8 - x}[/tex], (since, [tex]x^{1/a} = \sqrt[a]{x}[/tex])

= [tex]log_{5} \frac{x^5}{\sqrt[4]{8-x} }[/tex] , (using the quotient law: logₓ a - logₓ b = logₓ a/b).

∴ The expression 5 log₅ x - 1/4 log₅ (8 - x) can be condensed to [tex]log_{5} \frac{x^5}{\sqrt[4]{8-x} }[/tex] , using the laws of logarithms and exponents.

Learn more about the logarithms and exponents at

https://brainly.com/question/2141799

#SPJ2