A jet flies 425 km from Ottawa to Québec at rate v + 60. On the return flight, the
plane encountered wind resistance and travelled at rate v - 40. What is the
difference in flight times of the initial and return flights?

A jet flies 425 km from Ottawa to Québec at rate v 60 On the return flight the plane encountered wind resistance and travelled at rate v 40 What is the differen class=

Respuesta :

Answer:

a. [tex] \frac{- 42,500}{(v + 60)(v - 40)} [/tex]

Step-by-step Explanation:

Given:

Distance Ottawa to Québec = 425 km

Initial flight rate = v + 60

Return flight rate = v - 40

[tex] t = \frac{d}{r} [/tex]

Required:

Flight times difference of the initial and return flights

Solution:

=>Flight time of the initial flight:

[tex] t = \frac{d}{r} [/tex]

[tex] t = \frac{425}{v + 60} [/tex]

=>Flight time of the return flight:

[tex] t = \frac{425}{v - 40} [/tex]

=>Difference in flight times:

[tex] \frac{425}{v + 60} - \frac{425}{v - 40} [/tex]

[tex] \frac{425(v - 40) -425(v + 60)}{(v + 60)(v - 40)} [/tex]

[tex] \frac{425(v) - 425(40) -425(v) -425(+60)}{(v + 60)(v - 40)} [/tex]

[tex] \frac{425v - 17000 -425v - 25500}{(v + 60)(v - 40)} [/tex]

[tex] \frac{425v - 425v - 17000 - 25500}{(v + 60)(v - 40)} [/tex]

[tex] \frac{- 42,500}{(v + 60)(v - 40)} [/tex]