Respuesta :
The midpoint is the point that divide a segment into two equal halves, while the distance between points is the number of units between both points.
The distance between
- (1,-4.6) and (3,7) is 11.77
- (-6,-5) and (2,0) is 9.43
- (-1, 4) and (1-1) is 5.39
- (0.-8) and (3,2) is 10.44
The coordinate of midpoint of:
- (5, 8) and (-1,-4) is (2,2)
- (-5,9) and (-2,7) is (-.3.5,9)
- (-3,-7) and (13.-5) is (5,-6)
- (12,-6) and (-8,5) is (2,-0.5)
The distance in a coordinate geometry is calculated using: [tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex].
The distance between points is calculated as follows:
(1,-4.6) and (3,7)
[tex]d = \sqrt{(1 - 3)^2 + (-4.6 - 7)^2}[/tex]
[tex]d = \sqrt{138.56}[/tex]
[tex]d = 11.77[/tex]
(-6,-5) and (2,0)
[tex]d = \sqrt{(-6 - 2)^2 + (-5 - 0)^2}[/tex]
[tex]d = \sqrt{89}[/tex]
[tex]d = 9.43[/tex]
(-1, 4) and (1-1)
[tex]d = \sqrt{(-1 - 1)^2 + (4 - -1)^2}[/tex]
[tex]d = \sqrt{29}[/tex]
[tex]d = 5.39[/tex]
(0.-8) and (3,2)
[tex]d = \sqrt{(0 - 3)^2 + (-8 -2)^2}[/tex]
[tex]d = \sqrt{109}[/tex]
[tex]d = 10.44[/tex]
The midpoint (M) is calculated using: [tex]M = (\frac{x_1 + x_2}{2},\frac{y_1 + y_2}{2})[/tex]
The coordinate of midpoint is calculated as follows:
(5, 8) and (-1,-4)
[tex]M = (\frac{5-1}{2},\frac{8-4}{2})[/tex]
[tex]M = (\frac{4}{2},\frac{4}{2})[/tex]
[tex]M = (2,2)[/tex]
(-5,9) and (-2,7)
[tex]M = (\frac{-5-2}{2},\frac{9+7}{2})[/tex]
[tex]M = (\frac{-7}{2},\frac{16}{2})[/tex]
[tex]M = (-3.5,9)[/tex]
(-3,-7) and (13.-5)
[tex]M = (\frac{-3+13}{2},\frac{-7-5}{2})[/tex]
[tex]M = (\frac{10}{2},\frac{-12}{2})[/tex]
[tex]M = (5,-6)[/tex]
(12,-6) and (-8,5)
[tex]M = (\frac{12-8}{2},\frac{-6+5}{2})[/tex]
[tex]M = (\frac{4}{2},\frac{-1}{2})[/tex]
[tex]M = (2,-0.5)[/tex]
Read more about distance and midpoints in coordinate geometry at:
https://brainly.com/question/3715220