Consider the sequence {an} = {nrn}. Decide whether {an} converges for each value of r.
(a) r = 1/5
(b) r = 1
(c) r = 1/6
For what values of r does the sequence {nr^n} converges?

Respuesta :

Answer:

a). converges

b). diverges

c). converges

Step-by-step explanation:

{ [tex]$ a_n $[/tex] } = { [tex]$ nr^n $[/tex] }

Using radio test,

L = [tex]$ \lim_{n \rightarrow \infty} |\frac{a_n + 1}{a_n}| $[/tex]

   = [tex]$ \lim_{n \rightarrow \infty} |\frac{(n+1)r^{n+1}}{nr^n}| $[/tex]

   = [tex]$ \lim_{n \rightarrow \infty} |(1+\frac{1}{n})^r| $[/tex]

   = [tex]$ \lim_{n \rightarrow \infty} |r| $[/tex]

   = |r|

Therefore, [tex]$a_n$[/tex] converges in |r| < 1

a). r = 1/5

    [tex]$\{ a_n \}= \{\frac{1}{5}, n \}$[/tex]

This sequence is monotonically decreasing and bounded.

0 < [tex]$ a_n $[/tex] < 1

Hence, { [tex]$ a_n $[/tex] } converges.

b). r = 1

    { [tex]$ a_n $[/tex] } = { n }

This sequence is monotonically increasing sequence which is not bounded.

Hence, { [tex]$ a_n $[/tex] } diverges.

c). r = 1/6

[tex]$\{ a_n \}= \{\frac{1}{6}, n \}$[/tex]

This sequence is monotonically decreasing and bounded.

0 < [tex]$ a_n $[/tex] < 1

Hence, { [tex]$ a_n $[/tex] } converges.

For  |r| < 1, the [tex]$a_n$[/tex] converges.