The gestation period for cats has an approximate mean of 64 days and a standard deviation of 3 days. The distribution of the gestation period is approximately Normal.
a. What proportion of kittens have a gestation period of less than 68 days?
b. What proportion of kittens have a gestation period between 61 and 70 days?
c. What gestation period corresponds to the top 10% of gestation periods?
d. What gestation period corresponds to the 25th percentile?

Respuesta :

Answer:

a. P(X<68) = 0.9082

b. P(61 < X< 70) = 0.8185

c. the gestation period that corresponds to the top 10% of gestation periods = 67.846

d. the gestation period that corresponds to the 25th percentile = 61.977

Explanation:

Given that:

population mean  [tex]\mu[/tex] = 64

standard deviation [tex]\sigma[/tex] = 3

a. What proportion of kittens have a gestation period of less than 68 days?

here the sample mean x = 68

The standard normal distribution for the z score is

[tex]z = \dfrac{x -\mu}{\sigma}[/tex]

[tex]z = \dfrac{68 -64}{3}[/tex]

[tex]z = \dfrac{4}{3}[/tex]

z = 1.33

The proportion of the kittens having a gestation period of less than 68 days is:

P(X<68) = P(Z< 1.33)

Using the z - tables

P(X<68) = 0.9082

b. What proportion of kittens have a gestation period between 61 and 70 days?

here ; sample mean x₁ = 61 and x₂ = 70

the standard normal distribution for the z score is:

[tex]z_1 = \dfrac{61 -64}{3}[/tex]

[tex]z_1 = \dfrac{-3}{3}[/tex]

[tex]z_1 =-1[/tex]

[tex]z_2 = \dfrac{70-64}{3}[/tex]

[tex]z_2= \dfrac{6}{3}[/tex]

[tex]z_2= 2[/tex]

So, the proportion of kittens having a gestation period between 61 and 70 days is:

P(61 < X< 70) = P(-1 < Z < 2)

P(61 < X< 70) = P(Z < 2) - P( Z< -1)

From z tables

P(61 < X< 70) = 0.9772 - 0.1587

P(61 < X< 70) = 0.8185

c.  What gestation period corresponds to the top 10% of gestation periods?

i.e

P(X >[tex]x_o[/tex] ) = 0.1

P(X < [tex]x_o[/tex] ) = 1 - 0.1

P(X >[tex]x_o[/tex] ) = 0.9

[tex]P(Z < \dfrac{x - \mu}{\sigma}) =0.9[/tex]

Using the Excel Function : =NORMINV (0.9)

[tex]P(Z < \dfrac{x - \mu}{\sigma}) =1.282[/tex]

⇒ [tex]\dfrac{x - \mu}{\sigma}=1.282[/tex]

[tex]{x - \mu}=1.282 \times \sigma[/tex]

[tex]x =1.282 \times \sigma + \mu[/tex]

given that:

[tex]\mu = 64 \\ \sigma =3[/tex]

x = 1.282 × 3 + 64

x = 67.846

The gestation period that corresponds to the top 10% of gestation periods = 67.846

d. What gestation period corresponds to the 25th percentile?

At 25 percentile, using the EXCEL FUNCTION = NORMINV(0.25;64;3)

the gestation period that corresponds to the 25th percentile = 61.977

Ver imagen ajeigbeibraheem