Respuesta :
Answer:
A) З x,y : ( x/y < 1, y/x < 1 )
B) ∀ Y : ( Y > 0 = 1/Y > 0 )
C) з x,y : ( x+y = xy )
D) ∀ x,y : [ ( x>0 ) ∧( y > 0 ) = (( x/y > 0 ) ∧ ( y/x > 0 ))
E ) ∀ y : [ ( y > 0 ) ∧ ( y < 1) = ( 1 / y > 1 )
F) n ( ( з x ∀ y ( x <y ) )
G) ∀x (( x ≠ 0 ) = ( зy ( xy = 1 ) ))
H) ∀x ( (x≠0) = ( з! y (xy = 1))
Step-by-step explanation:
since the domain of discourse is a set of all real numbers the logical expressions of the English statements are expressed with respect to real number:
A) З x,y : ( x/y < 1, y/x < 1 )
B) ∀ Y : ( Y > 0 = 1/Y > 0 )
C) з x,y : ( x+y = xy )
D) ∀ x,y : [ ( x>0 ) ∧( y > 0 ) = (( x/y > 0 ) ∧ ( y/x > 0 ))
E ) ∀ y : [ ( y > 0 ) ∧ ( y < 1) = ( 1 / y > 1 )
F) n ( ( з x ∀ y ( x <y ) )
G) ∀x (( x ≠ 0 ) = ( зy ( xy = 1 ) ))
H) ∀x ( (x≠0) = ( з! y (xy = 1))
- З x,y : ( x/y < 1, y/x < 1 )
- ∀ Y : ( Y > 0 = 1/Y > 0 )
- з x,y : ( x+y = xy )
- ∀ x,y : [ ( x>0 ) ∧( y > 0 ) = (( x/y > 0 ) ∧ ( y/x > 0 ))
- ∀ y : [ ( y > 0 ) ∧ ( y < 1) = ( 1 / y > 1 )
- n ( ( з x ∀ y ( x <y ) )
- ∀x (( x ≠ 0 ) = ( зy ( xy = 1 ) ))
- ∀x ( (x≠0) = ( з! y (xy = 1))
In translating English written expressions to logical expressions, we have to know the domain of the discourse. The domain of discourse can be said to be a set of all real numbers that the logical expressions of the English statements are expressed with respect to their real numbers. And as such, we arrive at each of this.
A) З x,y : ( x/y < 1, y/x < 1 )
B) ∀ Y : ( Y > 0 = 1/Y > 0 )
C) з x,y : ( x+y = xy )
D) ∀ x,y : [ ( x>0 ) ∧( y > 0 ) = (( x/y > 0 ) ∧ ( y/x > 0 ))
E ) ∀ y : [ ( y > 0 ) ∧ ( y < 1) = ( 1 / y > 1 )
F) n ( ( з x ∀ y ( x <y ) )
G) ∀x (( x ≠ 0 ) = ( зy ( xy = 1 ) ))
H) ∀x ( (x≠0) = ( з! y (xy = 1))
read more about logic here https://brainly.com/question/7581378