Use Stokes' Theorem to evaluate S curl F · dS. F(x, y, z) = x2y3zi + sin(xyz)j + xyzk, S is the part of the cone y2 = x2 + z2 that lies between the planes y = 0 and y = 3, oriented in the direction of the positive y-axis.

Respuesta :

Answer:

[tex]$ \frac{2187 \pi}{4}$[/tex]

Step-by-step explanation:

Using Stoke's theorem, we get

[tex]$ \int \int_S curl F.dS = \int_C F.dr$[/tex]

Now parametrize C

r(t) = ( 3 cos t, 3 - 3 sin t )     where, t in [0 2π]

[tex]$ \int_C F. dr= \int_0 ^{2 \pi}F ( 3 \cos t, 3 - 3 \sin t). r'(t)dt$[/tex]

            [tex]$= \int_0^{2 \pi}(( 9 \cos^2 t)(27)(-3\sin t), \sin t \times (-27 \cos t \sin t)) . (-3 \sin t, 0 - 3 \cos t) dt $[/tex]

           [tex]$ = 27 \int_0^{2 \pi} 81 \cos ^2 t \sin ^2 t + 3 \cos ^2 t \sin tdt $[/tex]

           [tex]$ = 27 \int_0^{2 \pi} \frac{81}{4} \sin ^2 2t+27 [ - \cos^3 t]_0^{2 \pi}$[/tex]

           [tex]$ = 27 \times \frac{81}{4} \int_0^{2 \pi} \frac{(1- \cos 4t)}{2} $[/tex]

           [tex]$= \frac{2187}{8}[t-\frac{1}{4} \sin 4t]_0^{2 \pi} $[/tex]

           [tex]$= \frac{2187 \pi}{4}$[/tex]

   

By using Stokes Theorem the required S curl F.ds is [tex]\dfrac{2187\pi }{4}[/tex].

Given that,

Function F(x, y, z) = (x^2y^3z)i + sin(xyz)j + xyzk,

S is the part of the cone y^2 = x^2 + z^2 that lies between the planes y = 0 and y =3, oriented in the direction of the positive y-axis.

We have to determine,

Use Stokes' Theorem to evaluate S curl F·dS.

According to the question,

By using Stokes Theorem to evaluate S curl F .dS.

[tex]\int\ \int _s curlF.ds = \int _c F.dr\\\\[/tex]

Now parametrize C

r(t) = ( 3 cos t, 3 - 3 sin t ) ,

Where, t in [0 2π]

Then,

[tex]\int_c F.dr = \int^{2\pi }_0 F(3cost, 3-3sint).r'(t)dt\\\\[/tex]

[tex]= \int^{2\pi }_0 ((9cos^2t)(27)(-3sint),(sint) \times (-27cost.sint). (-3sint,0-3cost)dt\\\\= 27 \int^{2\pi }_0 81cos^2t .\ tsin^2t + 3 cos^2t. t sintdt\\\\= 27 \int^{2\pi }_0 \dfrac{81}{4}sin^22t+ 27[-cos^3t]^{2\pi }_0\\\\= 27 \times \dfrac{81}{4} \int^{2\pi }_{0} (\dfrac{1-cos4t}{2})\\\\= \dfrac{2187}{8}[t-\dfrac{1}{4}sin4t]^{2\pi }_0\\\\= \dfrac{2187}{8}[2\pi -\dfrac{1}{4}sin4(2\pi )- 0-\dfrac{1}{4}sin4(0 )]\\\\= \dfrac{2187\pi }{4}[/tex]

Hence, By using Stokes Theorem the required S curl F.ds is [tex]\dfrac{2187\pi }{4}[/tex].

To know more about Integration click the link given below.

https://brainly.com/question/17207150