Respuesta :

Answer:

9z

Step-by-step explanation:

4th root of z = z^1/4

=> 3 * z^1/4

=> 3z^1/4

3z^1/4 * 3z^3/4

=> 3 x 3 x z^1/4 + 3/4

=> 9z^4/4

=> 9z^1

=> 9z

The expression [tex]3\sqrt[4]{z}~.~3z^{\frac{3}{4} }[/tex] in the form k . [tex]z^{n}[/tex] is 9z.

We are given:

  =  [tex]3\sqrt[4]{z}~.~3z^{\frac{3}{4} }[/tex]

We need to write this in the form of :

  =   [tex]k~.~z^{n}[/tex]

What are exponents and powers?

We use exponents and powers when we want to write very large numbers or very small numbers in a simplified manner.

Example:

8 = 2 x 2 x 2 = [tex]2^{3}[/tex].

Where 2 is the base and 3 is the exponents.

72 = 8 x 9 = [tex]2^{3} \times3^{2}[/tex].

Here we have two bases 2 and 3 and two exponents 3 and 2.

8 / 9 =  [tex]\frac{2^{3} }{3^{2} }[/tex] =  [tex]2^{3} \times3^{-2}[/tex].

Here the bases are 2 and 3 and exponents are 3 and -2.

We have

[tex]3\sqrt[4]{z}~.~3z^{\frac{3}{4} }[/tex]

Here,

[tex]\sqrt[4]{z}[/tex] can be written as [tex]z^{\frac{1}{4} }[/tex].

  [tex]z^{\frac{1}{4} }~.~z^{\frac{3}{4} }[/tex]  can be written as :

                 [tex]z^{\frac{1}{4} +\frac{3}{4} }\\\\ z^{\frac{4}{4} } \\\\z^{1} = z[/tex]

Now we have,

3 x 3 x  [tex]z^{\frac{1}{4} }[/tex]  x [tex]z^{\frac{3}{4} }[/tex]

3 x 3 x z

[tex]3^{2}[/tex] x z

9 x [tex]z^{1}[/tex]

So, comparing with k . [tex]z^{n}[/tex]

we have,

k = 9 and n = 1.

The expression [tex]3\sqrt[4]{z}~.~3z^{\frac{3}{4} }[/tex] in the form k . [tex]z^{n}[/tex] is 9z.

Learn more about exponents and powers here:

https://brainly.com/question/9648446

#SPJ2