Respuesta :

x = 1

Answer:

[tex] m\angle XVW = 100\degree[/tex]

Step-by-step explanation:

In the first figure, FP is the bisector of [tex] \angle DFE[/tex]

[tex] \therefore m\angle 1 = m\angle 2\\

\therefore 44x + 1 = 46x - 1\\

\therefore 1 + 1 = 46x - 44x\\

\therefore 2 = 2x\\

\therefore \frac{2}{2} = x \\

\huge \red {\boxed {\therefore x = 1}} [/tex]

In the second figure, VP is the bisector of [tex] \angle XVW[/tex]

[tex] \therefore m\angle 1 = m\angle 2\\

\therefore 12x + 2 = 11x +6\\

\therefore 12x - 11x = 6 - 2\\

\therefore x = 4\\

\because m\angle XVW = m\angle1 + m\angle 2\\

\therefore m\angle XVW = 12x + 2 + 11x +6\\

\therefore m\angle XVW = 23x + 8\\

\therefore m\angle XVW = 23\times 4+ 8\\

\therefore m\angle XVW = 92+ 8\\

\huge \purple {\boxed {\therefore m\angle XVW = 100\degree}} \\

[/tex]