Respuesta :

Answer:

50 square units

Step-by-step explanation:

Using the formula provided, [tex]a = \frac{1}{2}h(b_1+b_2)[/tex], substituting the height (5), b1 (8) and b2 (12), we can solve for the formula.

[tex]a = \frac{1}{2}\cdot5(8+12)\\\\a = \frac{1}{2}\cdot5(20)\\\\a = \frac{1}{2}100\\\\a = 50[/tex]

Hope this helped!

Answer:

50 units²

Step-by-step explanation:

The area of a trapezoid can be found using the following formula.

[tex]A=\frac{1}{2}h(b_{1} +b_{2} )[/tex]

The height of the trapezoid is 5 units. The bases are 8 units and 12 units.

[tex]h= 5 \\b_{1} = 8\\b_{2} = 12[/tex]

Substitute the values into the formula.

[tex]A=\frac{1}{2}*5(8+12)[/tex]

Solve inside the parentheses. Add 8 and 12.

8+12=20

[tex]A=\frac{1}{2}*5(20)[/tex]

Multiply 5 and 20.

5*20= 100

[tex]A=\frac{1}{2}*100[/tex]

Multiply 1/2 and 100 or divide 100 by 2.

100 * 1/2= 50     or      100/2= 50

[tex]A= 50[/tex]

Add appropriate units. For this problem, the units are units².

[tex]A= 50 units^2[/tex]

The area of the trapezoid is 50 square units.