Sum of the numerator and denominator of the fraction is 4 more than twice the numerator . If the numerator and denominator is deceased by 3.they are in the ratio 2:3. Determine the fraction

Respuesta :

r3t40

The system is:

[tex]\frac{x}{y}=2x + 4[/tex]

[tex]\frac{x-3}{y-3}=\frac{2}{3}[/tex] (y musn't be 3).

Solving for y in the first equation gives you:

[tex]y=\frac{x}{2x+4}[/tex]

Simplify the second equation to:

[tex]2(y-3)=3(x-3)[/tex]

Insert y you solved in first equation to second equation to get:

[tex]\frac{x}{x+2}-6=3x-3[/tex]

Further simplification gets you to quadratic equation:

[tex]x=(3x+3)(x+2)\implies x=3x^2+9x+6[/tex] [tex]3x^2+8x+6=0[/tex].

Solving quadratic equation using quadratic formula gives you two solutions of x in complex plane:

[tex]x_1=\boxed{-\frac{8}{6}+\frac{\sqrt{8}}{6}i}[/tex]

[tex]x_2=\boxed{-\frac{8}{6}-\frac{\sqrt{8}}{6}i}[/tex]

Insert the found x-es into first equation to find the y-s:

[tex]y_1=\boxed{-\frac{1}{2}+\frac{\sqrt{2}}{2}i}[/tex]

[tex]y_2=\boxed{-\frac{1}{2}-\frac{\sqrt{2}}{2}i}[/tex]

So there are two solutions (points) [tex]P_1(x_1,y_1),P_2(x_2,y_2)[/tex] both in [tex]\mathbb{C}[/tex] plane.

And the two fractions are:

[tex]\frac{-\frac{8}{6}+\frac{\sqrt{8}}{6}i}{-\frac{1}{2}+\frac{\sqrt{2}}{2}i}[/tex].

[tex]\frac{-\frac{8}{6}-\frac{\sqrt{8}}{6}i}{-\frac{1}{2}-\frac{\sqrt{2}}{2}i}[/tex].

Hope this helps.