Respuesta :
Answer:
[tex]\large \boxed{\sf \frac{1}{9}}[/tex]
Step-by-step explanation:
[tex]\sf y=a(x-h)^2+k[/tex]
[tex]\sf Vertex = (h,k)[/tex]
y-value is 0 and the x value is 5
h = 2
k = -1
[tex]\sf 0=a(5-2)^2+-1[/tex]
Solve for [tex]\sf a[/tex] (the coefficient of the squared term).
[tex]\sf 0=a(3)^2+-1[/tex]
[tex]\sf 0=9a-1[/tex]
[tex]\sf 9a=1[/tex]
[tex]\displaystyle \sf a=\frac{1}{9}[/tex]
The coefficient of the squared term in the parabola equation is 1/9.
Answer:
Fot this parabola the coefficient for squared term is 7
Step-by-step explanation:
The formula for vertex equation is:
x = a*(y-h)^{2}+kx=a∗(y−h)
2
+k
if vertex is at (-3,-1) and in the formula the vertex is (k,h), we replace this values
x = a*(y +1)^{2} -3x=a∗(y+1)
2
−3
The other point of this parabola is (4,0), so we replace it in the formula below:
4 = a*(0 + 1)^{2} -34=a∗(0+1)
2
−3
4 = a*(1)-34=a∗(1)−3
4 +3= a*(1)4+3=a∗(1)
a=7a=7
