Respuesta :

Answer:

[tex] \boxed{ \bold{ \sf{x = 25°}}}[/tex]

[tex] \boxed{ \bold{ \sf{(x + 5) = 30°}}}[/tex]

[tex] \boxed{ \bold{ \sf{5x = 125°}}}[/tex]

Step-by-step explanation:

We know that sum of angle of triangle adds up to 180°

Finding the value of x

[tex] \sf{5x + x + x + 5 = 180°}[/tex]

Collect like terms

⇒[tex] \sf{7x + 5 = 180}[/tex]

Move 5 to right hand side and change its sign

⇒[tex] \sf{7x = 180 - 5}[/tex]

Subtract 5 from 180

⇒[tex] \sf{7x = 175}[/tex]

Divide both sides of the equation by 7

⇒[tex] \sf{ \frac{7x}{7} = \frac{175}{7} }[/tex]

Calculate

⇒[tex] \sf{x = 25°}[/tex]

Finding the value of ( x + 5 )°

[tex] \sf{x + 5}[/tex]

plug the value of x

⇒[tex] \sf{25 + 5}[/tex]

Add the numbers

⇒[tex] \sf{30°}[/tex]

Finding the value of 5x

[tex] \sf{5 \times 25}[/tex]

Multiply the numbers

⇒[tex] \sf{125°}[/tex]

Hope I helped!

Best regards!!

Answer:

x° = 25°

(x + 5)° = 30°

5x° = 125°

Step-by-step explanation:

total angle inside the triangle = 180 = x + (x+5) + 5x

180 = x + x + 5 + 5x

group like terms

7x + 5 = 180

subtract 5 each sides

7x = 175

x = 175/7

x = 25°

solve for : (x + 5)°

(x + 5)° = 25 + 5

(x + 5)° = 30°

solve for 5x°

5x° = 5 * 25

5x° = 125

check

180 = x + (x+5) + 5x

180 = 25 + (25+5) + (5*25)

180 = 25 + 30 + 125

180 = 180