Respuesta :
Answer:
23 units
Step-by-step explanation:
Use the distance formula: d = [tex]\sqrt{(x2 - x1)^2 + (y2 - y1)^2}[/tex]
Plug in the 2 points:
d = [tex]\sqrt{(-12 - 11)^2 + (-4 + 4)^2}[/tex]
d = [tex]\sqrt{529}[/tex]
d = 23
So, the distance is 23 units
Answer:
length of the line segment =23
Step-by-step explanation:
[tex] (11, −4) = (x_1 , y_1) \\ (−12, −4) = (x_2 , y_2) \\ d = \sqrt{(x_2 - x_1)^{2} + (y_2 - y_1)^{2} }[/tex]
Plug in the values into the equation
[tex]d = \sqrt{( - 12 - 11)^{2} + ( - 4 - ( - 4)^{2} } [/tex]
Simply :
-12-11=- -23
-4(-4) = -4+4=0
[tex]d = \sqrt{( - 23)^{2} + {(0)}^{2} } \\ d = \sqrt{529 + 0} \\ d = \sqrt{529} \\ d = 23[/tex]