Respuesta :

Answer: See below

Step-by-step explanation:

A.

Let's split the integral into two parts, by the Sum Rule.

[tex]\int\limits {x-4x^3} \, dx[/tex]                              [split into 2 integrals]

[tex]\int\limits {x} \, dx -\int\limits {4x^3} \, dx[/tex]                      [solve integral for each part]

[tex]\frac{1}{2} x^2-x^4+C[/tex]                            [Remember, we need to add C for constant]

-------------------------------------------------------------------------------------------------

B.

[tex]\int\limits {\frac{1+x}{\sqrt{x} } } \, dx[/tex]                                    [expand into 2 integrals]

[tex]\int\limits {\frac{1}{\sqrt{x} } } \, dx +\int\limits {\frac{x}{\sqrt{x} } } \, dx[/tex]                    [simplify second integral]

[tex]\int\limits {\frac{1}{\sqrt{x} } } \, dx +\int\limits {\sqrt{x} } \, dx[/tex]                    [solve integral for each part]

[tex]2\sqrt{x} +\frac{2}{3}x^3^/^2+C[/tex]

-------------------------------------------------------------------------------------------------

C.

[tex]\int\limits^4_0 {z(z^1^/^2-z^-^1^/^2)} \, dz[/tex]                [distribute]

[tex]\int\limits^4_0 {z^3^/^2-z^1^/^2} \, dz[/tex]                       [split into 2 integrals]

[tex]\int\limits^4_0 {z^3^/^2} \, dz -\int\limits^4_0 {z^1^/^2} \, dxz[/tex]              [solve integral for each part]

[tex]\frac{64}{5} -\frac{16}{3}[/tex]                                     [solve]

[tex]\frac{112}{15}[/tex]

-------------------------------------------------------------------------------------------------

D. *Note: I can't put -1 for the interval, but know that the 1 on the bottom is supposed to be -1.

[tex]\int\limits^1_1 {(1+u)(1-u)} \, du[/tex]                  [expand]

[tex]\int\limits^1_1 {1-u^2} \, du[/tex]                              [split into 2 integrals]

[tex]\int\limits^1_1 {1} \, du-\int\limits^1_1 {u^2} \, du[/tex]                      [solve integral for each part]

[tex]2-\frac{2}{3}[/tex]                                      [solve]

[tex]\frac{4}{3}[/tex]