Answer:
[tex] \boxed{\sf Tension \ in \ the \ string \ (T) = 3 \ kN} [/tex]
Given:
Mass (m) = 3.0 kg
Uniform speed (v) = 20 m/s
Length of string (r) = 40 cm = 0.4 m
To Find:
Tension in the string (T)
Explanation:
Tension (T) is the string will be equal to centripetal force ([tex] \sf F_c [/tex]).
[tex] \boxed{ \bold{ T = F_c = \frac{m {v}^{2} }{r} }}[/tex]
Substituting value of m, v & r in the equation:
[tex] \sf \implies T = \frac{3 \times {20}^{2} }{0.4} \\ \\ \sf \implies T = \frac{3 \times 400}{0.4} \\ \\ \sf \implies T =3 \times 1000 \\ \\ \sf \implies T =3000 \: N \\ \\ \sf \implies T =3 \: kN[/tex]
[tex] \therefore[/tex]
Tension in the string (T) = 3 kN