100 gives
PRT
The simple interest formula I
the interest I on a principal P invested at a
rate of R% per annum for T years.
a Find the interest when N150 000 is
invested at 5% per annum for 4 years.
b Find the principal that gains an interest of
N16100 in 5 years at 7% per annum.​

Respuesta :

Answer:

Step-by-step explanation:

a) P = N 150000

R = 5%

T = 5 years

Plug in the values P,R & T in the  formula

I = PRT

[tex]I=150000*\frac{5}{100}*4\\\\= 1500 * 5 * 4\\[/tex]

I = N 30000

b) I = N 16100

R = 7%

T = 5 years

[tex]PRT = I\\\\P*\frac{7}{100}*5=16100\\\\P=16100*\frac{100}{7*5}[/tex]

P= N 46000

Answer:

[tex] \boxed{ \bold{ \boxed{ \sf{a. \: \: interest \: = \: N \: 30000}}}}[/tex]

[tex] \boxed{ \bold{ \boxed{ \sf{b. principal \: = \: N \: 46000}}}}[/tex]

Step-by-step explanation:

a. Given,

Principal ( P ) = N 150000

Rate ( R ) = 5 %

Time ( T ) = 4 years

Interest ( I ) = ?

Finding the Interest ( I )

[tex] \boxed{ \bold{ \sf{interest = \frac{principal \times time \times rate}{100} }}}[/tex]

⇒[tex] \sf{interest = \frac{150000 \times 4 \times 5}{100} }[/tex]

⇒[tex] \sf{interest = \frac{3000000}{100}} [/tex]

⇒[tex] \sf{interest = N \: 30000}[/tex]

Interest = N 30000

------------------------------------------------------------

b. Given,

Interest ( I ) = N 16100

Time ( T ) = 5 years

Rate ( R ) = 7 %

Principal ( P ) = ?

Finding the principal

[tex] \boxed{ \bold{ \sf{principal = \frac{interest \times 100}{time \times rate}}}} [/tex]

⇒[tex] \sf{ \frac{16100 \times 100}{5 \times 7} }[/tex]

⇒[tex] \sf{ \frac{1610000}{35} }[/tex]

⇒N [tex] \sf{46000}[/tex]

Principal = N 46000

Hope I helped!

Best regards!!