Consider the geometric sequence: 8, 4, 2, 1, \dots8,4,2,1,…8, comma, 4, comma, 2, comma, 1, comma, dots If nnn is an integer, which of these functions generate the sequence? Choose all answers that apply: Choose all answers that apply: (Choice A, Checked) A a(n)=8\left(\dfrac12\right)^na(n)=8( 2 1 ) n a, left parenthesis, n, right parenthesis, equals, 8, left parenthesis, start fraction, 1, divided by, 2, end fraction, right parenthesis, start superscript, n, end superscript for n\geq1n≥1n, is greater than or equal to, 1 (Choice B) B b(n)=32\left(\dfrac12\right)^nb(n)=32( 2 1 ) n b, left parenthesis, n, right parenthesis, equals, 32, left parenthesis, start fraction, 1, divided by, 2, end fraction, right parenthesis, start superscript, n, end superscript for n\geq2n≥2n, is greater than or equal to, 2 (Choice C) C c(n)=64\left(\dfrac12\right)^nc(n)=64( 2 1 ) n c, left parenthesis, n, right parenthesis, equals, 64, left parenthesis, start fraction, 1, divided by, 2, end fraction, right parenthesis, start superscript, n, end superscript for n\geq3n≥3n, is greater than or equal to, 3 (Choice D, Checked) D d(n)=128\left(\dfrac12\right)^nd(n)=128( 2 1 ) n d, left parenthesis, n, right parenthesis, equals, 128, left parenthesis, start fraction, 1, divided by, 2, end fraction, right parenthesis, start superscript, n, end superscript for n\geq4n≥4
