Respuesta :

Answer:

See below.

Step-by-step explanation:

So we have the two functions:

[tex]f(x)=8x-5\text{ and } g(x)=9-2x[/tex]

And we want to find:

[tex](f\circ g)(x)\text{ and } (g\circ f)(x)[/tex]

1)

Recall that:

[tex](f\circ g)(x)[/tex]

is the same as:

[tex]=f(g(x))[/tex]

Thus, we can substitute g(x):

[tex]=f(9-2x)[/tex]

And substitute that into f(x):

[tex]f(x)=8x-5\\f(9-2x)=8(9-2x)-5[/tex]

Distribute:

[tex]=72-16x-5[/tex]

Subtract and simplify:

[tex]=67-16x\\=-16x+67[/tex]

Thus:

[tex](f\circ g)(x)=-16x+67[/tex]

2)

Similarly:

[tex](g\circ f)(x)=g(f(x))[/tex]

Substitute f(x):

[tex]g(f(x))=g(8x-5)[/tex]

Substitute:

[tex]g(8x-5)=9-2(8x-5)[/tex]

Distribute:

[tex]=9-16x+10[/tex]

Simplify:

[tex]=-16x+19[/tex]

Therefore:

[tex](g\circ f)(x)=-16x+19[/tex]