Respuesta :

Answer:

-8m/s2

Explanation:

it decelerate. initial velocity u=50m/s and final velocity v= 10m/s and the time t= 5s

using this equation v= u+at

a= v-u/t= 10-50/5=-40/5= -8m/s2

Answer:

[tex] \boxed{\sf Acceleration \ (a) = -8 \ m/s^2} [/tex]

Given:

Initial velocity (u) = 50 m/s

Final velocity (v) = 10 m/s

Time taken (t) = 5 seconds

To Find:

Acceleration (a) of the car

Explanation:

From equation of motion we have:

[tex] \boxed{ \bold{v = u + at}}[/tex]

By substituting value of v, u & t in the equation we get:

[tex] \sf \implies 10 = 50 + 5a \\ \\ \sf \implies 5a + 50 = 10 \\ \\ \sf \implies 5a = 10 - 50 \\ \\ \sf \implies 5a = - 40 \\ \\ \sf \implies a = - \frac{40}{5} \\ \\ \sf \implies a = - 8 \: m {s}^{ - 2} [/tex]

[tex] \therefore[/tex]

Acceleration (a) of the car = -8 m/s²