For the following problem, match the name of the number property that was used to get to each step from the previous step.
37 • 2 • (-5+ 5+ 1/2)

37 • 2 • (0 + 1/2 )

37 • 2 • 1/2

37 • 1

37

identity property of addition
commutative property
inverse property of multiplication
inverse property of addition
identity property of multiplication

Respuesta :

Answer:

1) Given, 2) Inverse property of addition, 3) Commutative property/Identity property of addition, 4) Inverse property of multiplication, 5) Identity property of multiplication/Result.

Step-by-step explanation:

In this exercise we present what real number properties are used in each step of the given procedure with its respective explanations:

1) [tex]37\cdot 2\cdot \left[(-5)+5+\frac{1}{2} \right][/tex] Given

2) [tex]37\cdot 2\cdot \left(0+\frac{1}{2} \right)[/tex] Inverse property of addition

The inverse property of addition states that:

[tex]u + v = 0[/tex], [tex]\forall \,u, v \in \mathbb{R}[/tex]

[tex]v = -u[/tex]

3) [tex]37\cdot 2 \cdot \left(\frac{1}{2} \right)[/tex] Commutative property/Identity property of addition

The commutative property of real numbers states that:

[tex]u+v = v+u[/tex], [tex]\forall \,u,v\in\mathbb{R}[/tex]

The identity property of addition of real numbers states that:

[tex]u+ 0 = u[/tex], [tex]\forall \,u\in\mathbb{R}[/tex]

4) [tex]37\cdot 1[/tex] Inverse property of multiplication.

The inverse property of real numbers states that:

[tex]u\cdot v = 1[/tex], [tex]\forall\,u,v \in \mathbb{R}[/tex]

[tex]v = u^{-1} = \frac{1}{u}[/tex]

5) [tex]37[/tex] Identity property of multiplication/Result.

The identity property of multiplication of real numbers states that:

[tex]u\cdot 1 = u[/tex], [tex]\forall \,u\in \mathbb{R}[/tex]