Answer:
Follows are the solution to this question:
Step-by-step explanation:
In point a:
[tex]\to \frac{5 \pi }{6}[/tex]
calculating a positive coterminal angle:
[tex]\to \frac{5 \pi }{6} + 2 \pi \\\\ \to \frac{5 \pi +12 \pi }{6} \\\\ \to \frac{17 \pi }{6} \\\\[/tex]
calculating negative coterminal angle:
[tex]\to \frac{5 \pi }{6} -2\pi \\\\ \to \frac{5 \pi - 12 \pi }{6} \\\\ \to \frac{ - 7 \pi }{6} \\\\[/tex]
In point b:
[tex]\to \frac{-9 \pi }{4}[/tex]
calculating a positive coterminal angle:
[tex]\to \frac{ -9 \pi }{4} + 2 \pi \ \ = \frac{-9 \pi + 8 \pi }{4} \\\\[/tex]
[tex]\to \frac{ - \pi }{4} + 2 \pi \ \ = \frac{- \pi + 8 \pi }{4} \\\\[/tex]
[tex]= \frac{ 7 \pi}{4}[/tex]
calculating a negative coterminal angle:
[tex]\to \frac{ -9 \pi }{4} - 2 \pi \\\\ \to \frac{-9 \pi - 8 \pi }{4} \\\\ \to \frac{-17 \pi }{4}[/tex]