Respuesta :

Answer:

1) [tex]\lim_{x \to3 } (2f(x))+g(-x))=13[/tex]

2) [tex]\lim_{x \to3 }\frac{g(x)}{f(-x)}=1/2[/tex]

Step-by-step explanation:

So we are given the limits:

[tex]\lim_{x \to3 }f(x)=4\text{ and } \lim_{x \to-3 } f(x)=2[/tex]

And:

[tex]\lim_{x \to 3 } g(x)= 1\text{ and } \lim_{x \to -3 } g(x)=5[/tex]

Question A)

We have the limit:

[tex]\lim_{x \to3 } (2f(x))+g(-x))[/tex]

We can split this limit using our properties:

[tex]= \lim_{x \to 3} (2f(x))+\lim_{x \to 3} g(-x)[/tex]

Now, use direct substitution. Substitute 3 for x. So:

[tex]=2(f(3))+g(-3)[/tex]

We are given that f(3) (or the limit as x approaches towards 3) is 4.

We know that the limit as x tends towards -3 of g(x) is 5. In other words, g(-3) can be said to be 5. So:

[tex]=2(4)+(5)[/tex]

Multiply:

[tex]=8+5=13[/tex]

So, our limit is:

[tex]\lim_{x \to3 } (2f(x))+g(-x))=13[/tex]

Question B:

We have the limit:

[tex]\lim_{x \to3 }\frac{g(x)}{f(-x)}[/tex]

Again, we can rewrite this as:

[tex]\frac{\lim_{x \to3 }g(x)}{\lim_{x \to3 }f(-x)}}[/tex]

Direct substitution:

[tex]=\frac{g(3)}{f(-3)}[/tex]

The value in the numerator, as given, is 1.

The value in the denominator will be 2. So:

[tex]=1/2[/tex]

Therefore, our limit is:

[tex]\lim_{x \to3 }\frac{g(x)}{f(-x)}=1/2[/tex]

And we're done!

Otras preguntas