Answer:
One of the values is an outlier (1.916)
Gcalc = 2.475
Explanation:
Using the Grubbs test:
Sorted values :
1.341
1.346
1.349
1.349
1.353
1.356
1.358
1.916
Mean of data (m) : ΣX / n
n = number of observations
(1.341 + 1.346 + 1.349 + 1.349 + 1.353 + 1.356 + 1.358 + 1.916) / 8
= 11.369 / 8
= 1.421
Standard deviation(sd) : Σ(X - m) / n
To save computation time, we can obtain standard deviation using a calculator :
Standard deviation = 0.200
Scrubb test statistic (G) :
max|X - m| / sd
| 1.341 - 1.421 | / 0.200 = 0.400
| 1.346 - 1.421 | / 0.200 = 0.375
| 1.349 - 1.421 | / 0.200 = 0.36
| 1.349 - 1.421 | / 0.200 = 0.36
| 1.353 -1.421 | / 0.200 = 0.34
| 1.356 - 1.421 | / 0.200 = 0.325
| 1.358 - 1.421 | / 0.200 = 0.315
| 1.916 - 1.421 | / 0.200 = 2.475
((Xmax - X) / sd) = 2.475
Z score = 2.475
The P-value as obtained from the p value calculator for a Zscore of 2.475 is 0.013324.
The result is significant at p< 0.05
Hence, the outlier is 1.916