Respuesta :

Answer:

5. x = 13

6. x = 11; y = 3

Step-by-step explanation:

5. (9x + 2)° = 119° (alternate interior angles are congruent)

[tex] 9x + 2 = 119 [/tex]

Subtract 2 from each side

[tex] 9x + 2 - 2 = 119 - 2 [/tex]

[tex] 9x = 117 [/tex]

Divide both sides by 9

[tex] \frac{9x}{9} = \frac{117}{9} [/tex]

[tex] x = 13 [/tex]

6. (9x + 25)° = (13x - 19)° (corresponding angles are congruent)

[tex] 9x + 25 = 13x - 19 [/tex]

Collect like terms

[tex] 9x - 13x = - 25 - 19 [/tex]

[tex] -4x = -44 [/tex]

Divide both sides by -4

[tex] \frac{-4x}{-4} = \frac{-44}{-4} [/tex]

[tex] x = 11 [/tex]

(13x - 19)° + (17y + 5)° = 180° (linear pair)

[tex] 13x - 19 + 17y + 5 = 180 [/tex]

Plug in the value of x and solve for y

[tex] 13(11) - 19 + 17y + 5 = 180 [/tex]

[tex] 143 - 19 + 17y + 5 = 180 [/tex]

Collect like terms

[tex] 129 + 17y = 180 [/tex]

Subtract 129 from both sides

[tex] 129 + 17y - 129 = 180 - 129 [/tex]

[tex] 17y = 51 [/tex]

Divide both sides by 17

[tex] \frac{17y}{17} = \frac{51}{17} [/tex]

[tex] y = 3 [/tex]